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Cluster formation, standing waves, and stripe patterns in oscillatory active media
with local and global coupling
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In recent years, the effect of global coupling on spatiotemporal pattern formation in oscillatory media
has attracted considerable interest. For the complex Ginzburg-Landau equation, modified by a global
coupling term, we derive a criterion for cluster formation and discuss standing wave solutions with an
intrinsic wavelength in the Benjamin-Feir stable parameter range. We argue that clustering expresses
the dominance of global coupling. In two-dimensional media the interplay between the standing wave
instability and anisotropic diffusion may generate stripe patterns coupled to a spatially uniform oscillat-
ing mode. Then, by direct numerical simulation, we show that the globally coupled reconstruction
model—proposed by Krischer, Eiswirth, and Ertl for CO oxidation on Pt(110) [Surf. Sci. 900, 251
(1991)] —exhibits clustering and predicts the presence of standing waves with an intrinsic wavelength.

JULY 1995

PACS number(s): 82.20.Wt, 82.20.Mj, 82.65.Jv

I. INTRODUCTION

Currently, there is a growing interest in spatiotemporal
patterns emerging as a result of global coupling in oscilla-
tory active media [1-5]. In this paper we use two
different approaches to investigate this problem. Our
first model is the complex Ginzburg-Landau equation
(CGLE) proposed by Mertens, Imbihl, and Mikhailov [4],

P=1—ie)y—(1+iB) >+ (1 +ic)Anp—pe*y . (1)

To account for global coupling, contrary to the usual
form of the CGLE, Eq. (1) is modified by the additional
last term, where

S
7 S fsdz n(z,t) (2)

denotes the spatial average of the complex oscillation am-
plitude. In Eq. (1) u describes the strength of global cou-
pling, x is the phase shift between the driving force and
the average complex amplitude, S denotes the system
size, and z the spatial coordinate. Analyzing the stability
of the homogeneous oscillatory solution of Eq. (1) we will
derive a criterion for the formation of cluster states. We
will show that this criterion coincides with an equivalent
condition found recently by Hakim and Rappel’s [3] con-
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siderations of an ensemble of N identical, globally cou-
pled Ginzburg-Landau oscillators without local coupling.
Looking for modulated standing wave solutions of Eq. (1)
we derive a set of coupled amplitude equations. By direct
numerical simulation we demonstrate the existence of
standing wave patterns and stripelike oscillating patterns
caused by anisotropic local coupling.

The second model starts from a kinetic scheme that
has been proposed by Krischer, Eiswirth, and Ertl which
describes kinetic oscillations during CO oxidation on pla-
tinum crystal surfaces under ultrahigh vacuum condi-
tions [6]. Under experimental conditions corresponding
to the oscillatory regime of the reaction, high-resolution
measurements, obtained by photoemission electron mi-
croscopy, revealed unusual coverage patterns such as
standing waves with an intrinsic wavelength, stripe pat-
terns on an oscillating background, and turbulent pat-
terns [7-9]. These spatiotemporal structures were associ-
ated with global coupling in the system whose existence
has shown up in variations of the CO partial pressure in
the gas phase, as verified experimentally [10]. Therefore,
we add spatial coupling terms, one due to surface
diffusion of adsorbed CO and the other to global coupling
through the gas phase, to the kinetic scheme of Krischer,
Eiswirth, and Ertl. Then we end with the following sys-
tem of equations:

4)
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Equation (3) for the coverage of carbon monoxide (c) de-
scribes adsorption and desorption of CO, as well as the
formation of CO, according to a Langmuir-Hinshelwood
mechanism. Local coupling on the surface is provided by
the diffusion of adsorbed CO. The balance of oxygen
coverage [0, Eq. (4)] includes the adsorption and reaction
terms; contributions due to desorption and to diffusion of
adsorbed oxygen may be ignored in the parameter range
we are considering in the following. The kinetic scheme
involves an adsorbate-driven phase transition of the
Pt(110) surface between a 1X2 and a 1 X1 structure. This
is described by Eq. (5), where w denotes the fraction of
the surface with a 1X1 structure, 1 —w being the surface
fraction with a 1X2 structure. The last equation, (6), for

1__.

(5)
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the partial pressure of CO in the gas phase, has been ob-
tained from the ideal gas law. It considers the volume
current J, into (respectively, out of) the reactor and con-
tributions due to adsorption and desorption of CO, where
the corresponding terms have to be integrated over the
whole surface (A4). Vyy denotes the volume of one
monolayer adsorbed CO in the reactor of volume V. For
convenience, all parameters of the model are listed in
Table I with their meaning and their numerical value
defined for the following text. This table is taken from
Ref. [6]. The numerical simulations carried out for the
model (3)-(6) focus on the ability of the system to exhibit
cluster formation and to support modulated standing
waves with an intrinsic wavelength.

s

TABLE 1. Parameters and variables of the reconstruction model.

Variables

4

CO coverage

4 O coverage

w Ratio of the surface in the 1X1 structure

Pco Partial pressure of CO in the gas phase

Parameters

CcCO K, Adsorption rate 4.18X10° MLs™! Torr™!
S. Sticking coefficient 1
Cs Saturation coverage 1 ML

0, k, Adsorption rate 7.81X10° MLs™! Torr ™!
So1 Sticking coefficient on 1X1 0.6
So2 Sticking coefficient on 1X2 0.4
0 Saturation coverage 0.8 ML
Po2 Partial pressure of oxygen

Rates with k;= A4; exp(—E;/RT), i=1,2,3

ks Reaction A;=3X10° (MLs)™!
k, CO desorption  A4,=2X10'¢ 57!
ks Phase transition A45=200 s™!

E;=10 kcal/mol
E, =38 kcal/mol
E ;=7 kcal/mol

Local coupling

Diffusion coefficient D =10 um?s ™!

Global coupling

14 Volume of the reactor 551
Jio Volume current into the reactor 360 1/s
A Crystal surface

Vmr Volume of one monolayer adsorbed CO

pcop Partial pressure of CO in the gas inlet
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II. CLUSTERING IN DISTRIBUTED
OSCILLATORY MEDIA WITH GLOBAL COUPLING

Equation (1) admits solutions in the form of uniform
oscillations

n(x,t)= de'? | 7
with amplitude 4 and frequency () according to
A*=1-—pcosy>0, Q=—o—B—pu(siny—pBcosy) .

(8)

In analyzing the stability of the uniform oscillatory state
with respect to small perturbations p~e'(kz+0+At of
wave vector k, it must be noted that for nonuniform per-
turbations with k70 the average complex amplitude 7
vanishes, and we have to carry out the stability analysis
for uniform and for nonuniform perturbations separately.
Let us denote the growth rate of uniform perturbations
by A(k =0). We emphasize that A(k =0) is different
form A(k —0), the latter being the long wavelength limit
of the growth rate of nonuniform perturbations. In the
case where k0 we obtain the dispersion relation

Mk)=—k2+2ucosy—1
+{—[B—pu(siny +Bcosy)+ek?]?
+(1+82)(1—pcosy)?}!? . 9

Thus, in the limit £ —0 the uniform oscillatory state be-
comes unstable if

2ucosy—1>0, (10)
or when condition (10) does not hold, if
u[2+cos2y+Bsin2y]—2(cosy +Bsiny) <0 . (11)

The last two conditions show how the Benjamin-Feir in-
stability will be affected by the presence of global cou-
pling. In the parameter range where (10) and (11) are
satisfied the dispersion relation (9) has a shape, as shown
in Fig. 1. The homogeneous oscillation is stable with
respect to uniform perturbations [ReA(k =0)<O0], but

FIG. 1. Dispersion relation typical for the parameter range
where clustering occurs. With respect to uniform perturbations
the system is stable, corresponding to a peak downward in ReA
at k =0.

A P

FIG. 2. Space time plot of a cluster pattern obtained with
B=—1.8, ©=0, £¢=0, y=4.21, and p=9.0. In the notation of
Hakim et al. these parameters are equivalent to u’=1.44 and
¢'=—f'=1.8. Bright areas correspond to high values of Ren;
dark areas to low values of Ren. 7 and z denote the dimension-
less time and spatial coordinate, respectively. In dimensionless
units the system length is equal to 80.42 and the temporal
period is 0.46.

unstable with respect to nonuniform perturbations with
small k [ReA(k —0)>0]. In this situation the system ex-
hibits clustering. The two clusters consist of local oscilla-
tors that have the same complex amplitude, but it differs
from one cluster to the other cluster. In the distributed
medium each cluster consists of one or a few synchro-
nously oscillating spatial domains, as shown in Fig. 2.

For globally coupled Ginzburg-Landau oscillators
without local coupling the phenomenon of cluster forma-
tion has been investigated by Hakim ez al. using the sys-
tem of equations

(1+i€")

N ’ ’
N = m—m),

i=1

j=1,...,N. (12

ny=p'n;—(1+if)|n;*n;+
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For clustering the condition,
2u'(1+B€)+1+B%=0 (13)

has been derived. We will now show that both criteria,
i.e., (10), (11), and (13), coincide. Applying the transfor-
mation

= cos(x +m)] 2 lepsinx+miry:

’

T

g pcos(y+m) ’
,_ 1+pcos(y+m)
peos(y+m) 14
B=g,
g =tany

to Eq. (1) we obtain Hakim’s equation (12). The real part
of the prefactor in the coupling term of Eq. (12) is posi-
tive. According to that we require 7 /2 <y <37 /2 in Eq.
(1). This implies that ' >0 and 2u cosy —1<0, i.e., con-
dition (10) is not satisfied. Under the transformation (14)
from the second condition, Eq. (11) follows Eq. (13). We
conclude that the threshold for clustering is the same for
oscillators exclusively coupled globally, Eq. (12), and for
the distributed oscillatory medium described by Egs. (1)
and (2), where global and local coupling act simultane-
ously.

In the parameter space next to the region with cluster
formation Hakim finds a region with chaotic behavior.
For adequate parameter values that are determined ac-
cording to (14), we observe this transition with Eq. (1) in
the distributed medium, too. We argue that global cou-
pling governs the behavior of the system not only close to

141

0.70 0.75

Vi, (1 / ML)

FIG. 3. Main characteristic features of clusters in depen-
dence of V. The lines show the results obtained for oscilla-
tors coupled only globally and the symbols the results for both
locally and globally coupled oscillators, respectively: size ratio,
solid line and dots; amplitude ratio, dashed line and triangles;
phase shift, doted line and open circles. The parameters are
Po2=1.17X107* Torr, pcor=4.0X10"3 Torr, T=545 K,
Jio0=360 1/s, V=55 1. WV is in units of 1/ML (ML, mono-
layer).

the onset of cluster formation but in a whole parameter
region that extends at least up to the mentioned transi-
tion to chaotic motion. Here, clustering expresses the
dominance of global over local coupling in distributed os-
cillatory media.

Next, we turn to consider the reconstruction model,
Egs. (3)-(6). In this case we have determined the disper-
sion relation numerically. In a certain parameter range
the Floquet exponent L —representing stability of the
uniform oscillatory state with respect to nonuniform
perturbations—may become positive [11]. This parame-
ter range does not depend on whether local coupling was
taken into account (D+<0) or not (D =0). Inside this pa-
rameter range the homogeneous oscillation decomposes
into a two-cluster solution. The characteristic features of
the cluster solution are the size ratio, the amplitude ratio,
and the phase shift between the clusters. In Fig. 3 these
quantities are plotted against the global coupling parame-
ter V., both with and without local coupling in the sys-
tem. The deviations between the two cases are small ex-
cept for low V. values, whether the clusters exhibit ir-
regular oscillations without local coupling. Thus the nu-
merical results support the point of view that there exists
a whole parameter range where pattern formation in Egs.
(3)—(6) is governed by global coupling. In the next sec-
tion we discuss the standing waves created due to the
presence of global coupling.

III. MODULATED STANDING WAVES
WITH AN INTRINSIC WAVELENGTH

We start with the CGLE and consider the Benjamin-
Feir stable case 1+¢B>0, looking for standing waves
generated by global coupling. By numerical simulation of
the globally coupled CGLE [Egs. (1) and (2)] we found
standing waves with an intrinsic wavelength provided the
growth rate A has a positive global maximum at k,,

K2,.= —% B—u(siny 4B cosy)
1+ p 172
+ H_Ez(l—ycosx)2 ] (15)

ReX

0.0 0.4 0.8

k

FIG. 4. Dispersion relation for B=1.56, w=0, £=4.8,
x=1.65, u=4.8. k.., obeys Eq. (15).
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at a finite distance from zero (compare Fig. 4), and if the
global coupling is destablizing, i.e., 7/2 <) <37 /2. For
stabilizing global coupling, —7/2<y <w/2, standing
waves were found only as a transient pattern.

Now we ask for modulated standing wave solutions of
Egs. (1) and (2) in the form

N1, 2)=n( )+ i (TN e*e+ e ~k2) (16)

7o represents the spatially uniform mode and 7, the am-
plitude of the standing wave. The ansatz (16) is support-
ed by the Fourier analysis of the simulation data that re-
vealed that about 85% of the spectral power is concen-
trated in the first order spatial mode. In the following we
restrict ourselves to the parameter range where the ap-
proximation (16) is meaningful and after substituting it
into (1), all spatial modes of higher order may be neglect-
ed. Then we find the following coupling equations for the
amplitudes 7, and 7, :

The solution of (19) reads

2 1—=k*—2(1—pcosy)(1+cos2y +Bsin2y)
E ©

kT 3—401 +cos2y +Bsin2y )(2+cos2y —Bsin2y) ’

E2= 3(1—p cosy)—2(1—k?)(2+cos2y —Bsin2y)
i=

3—4(1+4cos2y +Bsin2y )(2+cos2y —Bsin2y) ’
3(1—p cosy)—2(1—k?)(2+cos2y —Bsin2y)

Ho=(1—io—peX)m,—(1+iB)|no*n,
—4(1+iB) | Pne—2(1+iB)mins ,
Me=[1—io—(1+ie)k2In, —3(1+iB)|n. |,
—2(14+iB)|no|*ne —2(1+iB)n3nk .

We assume the following time dependence for 1, and
Mk*

— —i(o+Q)r
no=Eqe ’

(17)

Mk =Eke—i[(a)+ﬂ)'r+y] . (18)

For the amplitudes E, and E,, the frequency (2, and the
phase shift y, we find with (17) the equations

1+iQ—pe*=(1+iB)E3+2(1+iB)2+e*")E} ,
1+iQ—(1+ie)k?=3(1+iB)E}? (19)
+2(1+iB)2+e%7)E} .

(20)

Q=B—(B—e)k>—2(1+B)sin2y 3=

where ¥ has to be determined from the following fourth
order algebraic equation for tany:

4
> ritan'y =0, with
i=0

ro=21[(B—e)k2+u(1+ B4 %sin(y —x")]=—Tr, ,
ri=4[(1+B2)(6—3k2—p cosy)—2(1+Be)k?
+2uB(1+B*)%sin(y —x")] ,
r, =16B[(1+Be)k2—pu(1+ B> 2cos(x +x")]
+2[(B—e)k*+p(1+8H) %sin(x —x)] ,
ry=4[(1+B%)(k?+p cosy —2)—2(1+Be)k?
+2u(1+B4)2cos(x +x)] -

21

Here tany’=p. Because ro=—7r, Eq. (21) possesses at
least two real solutions for tany. To compare the analyti-
cal and the numerical results we have taken, for example,
the parameter values €e=8, f=1.4, y=1.65, u=6, and
k =Kk pax =0.6710. Then, from (20) and (21) we get
E;,=0.7525, E; =0.3507, 2=7.3862, and y = —0.5649.
From numerical simulations we obtain E;=1.0978,
E,=0.3036, and 2=7.9467. If we use the wave vector
k =0.6749, which was found numerically, instead of
K max> then we have E,=0.7461, E;, =0.3526, 0 =17.3762,
and ¥y =—0.5672. Bearing in mind that higher order
spatial modes contribute about 15% to the spatial ampli-

4(1+cos2y +Bsin2y }(2+cos2y —Bsin2y) ’

tude of the standing wave, the agreement is satisfactory.
Figure 5 summarizes the qualitative changes in the
shape of the dispersion relation that occurs under varia-
tion of the parameters € and u, characterizing the
strength of local and global coupling, respectively. The
broken line marks the locus of the Benjamin-Feir instabil-
ity given by 1+¢eB=0. Typical spatiotemporal patterns
associated with different regions in the parameter plane
are cluster formation and oscillating domains (region a);
cluster states modified by a periodic spatial structure (re-
gion b); standing waves with an intrinsic wavelength (re-
gion c); and homogeneous oscillations (region d). This se-
quence of transitions (a—d) occurs when increasing p,
provided € exceeds some f3- and y-dependent threshold.
The change in the curvature of the dispersion relation at
k =0 defines the boundary between simple cluster pat-
terns (compare Fig. 2) and cluster patterns modified by a
periodic spatial structure. The behavior in the
Benjamin-Feir unstable parameter region, denoted in Fig.
5, was studied by Mertens, Imbihl, and Mikhailov [12].
The standing waves change their properties inside re-
gion (c) of Fig. 5. Sufficiently far away from line 1, when
ReA(k —0) <<0, modulated standing waves with con-
stant in space amplitude appear as shown in Fig. 6. Their
wavelength is in the unstable k range in the vicinity of
k nax- The intrinsic character of the wavelength has been
verified numerically for random initial conditions: no
influence of the system size or the boundary conditions
has been observed. If ReA(k —0) becomes close to zero,
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FIG. 5. Regimes of behavior of an oscillatory medium de-
scribed by the globally coupled CGLE in the u-e parameter
plane for B=1.56 and y=1.65. Lines 1 to 3 are defined from
the following conditions: 1—ReA(k —0)=0, 2—-Benjamin-Feir
line 1+¢eB=0, 3-ReA(kp.y ) =0, and 4—d*ReA(k)/dk?|; —,=0.
The shape of the dispersion relation in parameter region a—e is
shown, too. Key: a, cluster states; b,e, cluster states modified
by a periodic spatial structure; c, standing waves; and d, homo-
geneously oscillating state.

clustering as well as spatial modes influence the pattern.
It becomes obvious if we compare this with the situation
without local coupling, when ReA(k —0) is positive, but
close to zero. Then the size of the two clusters may be
significantly different. The smaller cluster oscillates with
the larger amplitude. This is reflected also in the one di-
mensional pattern shown in Fig. 7. There is a broad spa-
tial range oscillating with small temporal and spatial am-
plitudes and a smaller range with large temporal and spa-
tial amplitudes.

Standing waves exist only beyond critical values p,
and €. In Fig. 8 u . has been determined from the con-
dition ReA(k—0)=0; for pu>p, we have
ReA(k —0) <0. The value of g follows from the condi-
tion ReA(k,,,)=0 with ReA(k,,,)>0fore>¢_.

Besides the described modulated standing waves in the
same parameter range another pattern with a wave vector
k =27 /S as the basic mode was found. This wave pat-
tern arises only from near symmetrical initial conditions.
Both patterns correspond to different values of the aver-
age complex amplitude 7. The 7% value associated with
the modulated standing waves is about ten times larger
than that of the pattern with the size-dependent wave-
length.

A

y4

FIG. 6. Space time plot of a standing wave obtained for
B=—1.5, 0=0, e=—5, y=4.587, u=4.0. 7 and z denote the
dimensionless time and spatial coordinate, respectively. The
system length is equal to 50.26.

Returning once more to the reconstruction model with
global coupling Egs. (3)-(6), we find within this model
standing wave patterns with an intrinsic wavelength lo-
cated in two different parameter ranges. In the first range
for the Floquet exponents of the uniform oscillatory state
we have the conditions ReL(k—0)>0 and
ReL (k,,,.)>ReL(k—0). As shown in Fig. 9, here clus-
ter states modulated by a shorter standing wave occur
similarly to those observed with the CGLE near the
boundary ReA(k—0)=0. The parameter range in the
Pcor —Poz blane, where for any Vyy a dispersion rela-
tion with the indicated properties exists, is plotted in Fig.
10.

The second parameter range with standing waves is lo-
cated between the parameters for which clustering occurs
and the parameters corresponding to turbulent patterns.
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FIG. 7. Modulated cluster pattern influenced by spatial
modes with k <k, for e=—2, B=—1.7, 0=0, y=4.6338,
and p=4.1. Then without local coupling the size ratio of the
two clusters is equal to 11.5. In the distributed medium this re-
sults in the formation of a broad spatial domain with small tem-
poral and spatial amplitudes and a comparably narrow region
with large spatial amplitudes. z denotes the dimensionless spa-
tial coordinate. The system length is equal to 50.26, and the
temporal period is 1.14 in dimensionless units.

Here the homogeneous state is stable. Nevertheless,
modulated standing waves were obtained as shown in the
space-time plot on Fig. 11. We observe a certain range of
allowed wavelengths that become slightly shorter with
decreasing V). Figure 12 shows the wavelength as a
function of the system size S. On the upper branch the
system contains three wavelengths, and on the lower one,
four wavelengths. The wavelength difference between the
two branches provides a rough estimate for the width of
the stable band. In the range where the two branches
overlap, the patterns corresponding to the upper branch
exhibit strong amplitude oscillations. Outside this coex-
istence range the wavelength is independent of the initial
condition. For periodic initial conditions with a wave-
length below the wavelength band, the system reaches the
homogeneous oscillatory state, occasionally after a very
long transient. If the wavelength of the initial condition

15.0

10.0

5.0 [T

0.0 1.0 2.0 3.0
B

FIG. 8. Critical values for the onset of the standing wave in-
stability, €., and p,, as a function of B for y=1.65.

0.6 vaw

0.5

04 *\/\/\/\/‘\/\,\/—\/\/ u
0.3
02 VAT et A

5000 10000
z

FIG. 9. Modulated cluster pattern obtained with the globally
coupled reconstruction model for pg,=1.68X107* Torr,
Pcog=4.734X 1075 Torr, T=545 K, V. =0.095 1/ML,
Ji0=3601/s, V=551, and ks=400 s~!. u denotes the CO cov-
erage, v the O coverage, and w the fraction of the surface with
the 1X1 structure. z is the spatial coordinate in dimensionless
units. The length of the system is 2.171 mm. The temporal
period is 2.45 s.

is higher than the band, then the system turns into the
modulated standing wave. The wavelength is indepen-
dent of the boundary conditions (see Fig. 12).

IV. STRIPE PATTERNS DUE TO
ANISOTROPIC DIFFUSION

Among the spatiotemporal patterns observed in experi-
mental studies of CO oxidation on Pt(110) stripelike pat-
terns has been observed. We argue that stripes may be
generated if the standing wave instability takes place in a
medium with anisotropic diffusion. For CO oxidation on
Pt(110) the adsorbate-induced phase transition leads to
an anisotropy of the crystal surface with respect to
diffusion of adsorbed CO. The diffusion is increased by a
factor of up to 10 in the [110] compared with the
diffusion in the [001] crystallographic direction.

To test our idea, we have carried out two-dimensional
simulations with the CGLE [Egs. (1) and (2)] using

2

P, (10* Torr)

36 4.0 4.4 48
Peo (107° Torr)

FIG. 10. Parameter range in the pcor-po, plane, where for
any Vo dispersion relations with the properties ReA(k—0)>0
and ReA(k,,,)>Rellk—0) exists; T=54* K, J;x=360 1/s,
and V=551
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T
z
FIG. 11. Space time plot of a standing wave at

Po2=1.16X10"* Torr, pcog=4.0X10"> Torr, T =545 K,
VumL =0.751/ML, J;,=360 1/s, ¥ =55 1. Bright (dark) grey lev-
el represents an area with high (low) CO coverage. 7 and z
denote the dimensionless time and spatial coordinate, respec-
tively. The length of the system is 0.677 mm. The temporal
period is 4.21 s.

different values for € during the calculations: £=0.96 in
one spatial direction, and £=4.8 in the other. For the
chosen values of the remaining parameters in the CGLE
with £€=0.96, ReA(k) is negative for all k, whereas with
€=4.8 the standing wave instability occurs. Figure 12
presents the result of the simulation. The stripes of the
pattern are perpendicular to the direction with faster
diffusion. Thus we conclude that the stripe pattern may
be interpreted as the result of the standing wave instabili-
ty under spatial anisotropic conditions. Note that the
stripe pattern is stable with respect to topological defects.
This also follows from Fig. 13, where a topological defect
disappears in the course of time.

V. DISCUSSION

We study spatiotemporal structures that appear in os-
cillatory active media with global coupling between indi-

230 S=31
o /
E
2 190
—
170 / S=41
150

630 650 670 690 710

S (um)

FIG. 12. Wavelength 1 of the standing wave obtained with
the reconstruction model as a function of the system size S for
Po2=1.16X10"* Torr, pcor=4.0X10"° Torr, T=545 K,
VmLr=0.75 I/ML, J;,=360 1/s, and V=55 1. The lines are
determined from periodic boundary conditions. The dot
denotes a wavelength found using no flux boundary conditions.

X

FIG. 13. Snapshots of a pattern showing Ren at two different
time moments, 7=77.5 (top) and 7=102.8 (bottom). The pat-
tern was obtained by numerical solution of the globally coupled
CGLE in two spatial dimensions for f=1.56, ©=0, y=1.65,
and p=4.8. To introduce an anisotropic local coupling,
different values for € have been chosen in the x and y direction:
€, =4.8 and £,=0.96. Bright areas correspond to high values
of Re, dark areas to low values of Ren. The system size is
50.26<50.26 in dimensionless units.

vidual oscillators, alongside local coupling by diffusion.
Our investigations are based on the CGLE and on the
reconstruction model for the CO oxidation on Pt(110),
both modified by terms describing global coupling. With
both models we found that dominance of global coupling
manifests itself in the formation of clusters. The clusters
form synchronously oscillating spatial domains without
an intrinsic characteristic length scale. There exists,
however, a region in parameter space where global and
local coupling jointly cooperate and the final pattern is a
modulated standing wave with an intrinsic wavelength.
For the CGLE the standing wave instability appears in
the Benjamin-Feir stable case 1+¢f>0. It is induced by
the global coupling and disappears if the coupling
strength becomes small enough. In addition there should
be a sufficiently high level of local coupling. For the
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reconstruction model, standing waves with an intrinsic
wavelength could also be observed. In one spatial di-
mension we have carried out extensive numerical simula-
tions to prove that the wavelength is independent of ini-
tial and boundary conditions as well as of the system size.

The Ginzburg-Landau and reconstruction models
differ with respect to the patterns coexisting with the
standing wave solution. The standing wave pattern ob-
tained with the reconstruction model coexists with the
uniform oscillating state. In contrast to that, the standing
wave pattern found with the CGLE model coexists with
another standing wave, the wavelength of which is always
equal to the system length S.

With the CGLE model in a parameter region where
ReA(k ) > ReA(k —0) >0, spatially modulated clusters
arise. In this regime a preferred wave vector can also be
observed, but now it can be any value from the interval
0<k <k, i.e., k is not necessarily close to k_,,. The
reconstruction model also exhibits spatially modulated
cluster solutions [13]. Mertens, Imbihl, and Mikhailov
studied the CGLE [4,12] in the limit of small coupling
strength p <<1. For sufficiently strong global coupling
they found standing waves in the Benjamin-Feir unstable
parameter range. In this case global coupling transforms
an unstable phase-turbulent pattern into a standing wave
pattern. In contrast to that, we have studied herein the
Benjamin-Feir stable regime, where an instability to
standing waves is induced by the global coupling.

Recently, Levine and Zou derived coupled CGLE
models, valid near the Hopf bifurcation of the recon-
struction model and modified by additional terms to ac-

count for global couplings [1,2]. Near a codimension-two
point, where the global oscillation and spatial nonuni-
form modes with ¢=0 simultaneously undergo a Hopf bi-
furcation with similar frequencies, this set of coupled am-
plitude equations predicts the presence of standing waves
modulated by an overall global oscillation. These waves
can be obtained even without global coupling, due to
parametric resonance. The authors propose that they de-
scribe most closely the experimentally observed waves.

We remark that the standing wave patterns observed
so far in experiments with the CO oxidation on Pt(110)
surfaces differ in some respect from the standing wave
solutions obtained in the reconstruction model, Egs.
(3)-(6). At a fixed moment in time the spatial profiles of
the standing waves, viewed in the experiments, exhibit
periodically spaced pronounced peaks. A half time
period later the profile looks exactly the same, only shift-
ed in space by half a wavelength. The standing wave
solution of the reconstruction model shows pronounced
peaks in the spatial profile, too. However, now a half
time period later, the peaks form at the same position but
they point downward, i.e., instead of a sharp local max-
imum, a sharp local minimum develops. Thus, unresolved
questions still remain in the comprehension of the stand-
ing wave pattern in the CO oxidation on Pt(110).
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FIG. 11. Space time plot of a standing wave at
Por=1.16X10"* Torr, pcor=4.0X10"% Torr, T=545 K,
VuL=0.75 I/ML, J;,=360 1/s, ¥ =55 1. Bright (dark) grey lev-
el represents an area with high (low) CO coverage. 7 and z
denote the dimensionless time and spatial coordinate, respec-
tively. The length of the system is 0.677 mm. The temporal
period is 4.21 s.
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FIG. 13. Snapshots of a pattern showing Re7 at two different
time moments, 7=77.5 (top) and 7=102.8 (bottom). The pat-
tern was obtained by numerical solution of the globally coupled
CGLE in two spatial dimensions for f=1.56, =0, Y=1.65,
and p=4.8. To introduce an anisotropic local coupling,
different values for € have been chosen in the x and y direction:
€, =4.8 and ¢,=0.96. Bright areas correspond to high values
of Ren, dark areas to low values of Ren. The system size is
50.26X50.26 in dimensionless units.



